Efficient DNA Coding Algorithm for Polymerase Chain Reaction Amplification Information Retrieval

Author:

Wang Qing1,Zhang Shufang1,Li Yuhui1

Affiliation:

1. School of Electrical Automation and Information Engineering, Tianjin University, Tianjin 300072, China

Abstract

Polymerase Chain Reaction (PCR) amplification is widely used for retrieving information from DNA storage. During the PCR amplification process, nonspecific pairing between the 3’ end of the primer and the DNA sequence can cause cross-talk in the amplification reaction, leading to the generation of interfering sequences and reduced amplification accuracy. To address this issue, we propose an efficient coding algorithm for PCR amplification information retrieval (ECA-PCRAIR). This algorithm employs variable-length scanning and pruning optimization to construct a codebook that maximizes storage density while satisfying traditional biological constraints. Subsequently, a codeword search tree is constructed based on the primer library to optimize the codebook, and a variable-length interleaver is used for constraint detection and correction, thereby minimizing the likelihood of nonspecific pairing. Experimental results demonstrate that ECA-PCRAIR can reduce the probability of nonspecific pairing between the 3’ end of the primer and the DNA sequence to 2–25%, enhancing the robustness of the DNA sequences. Additionally, ECA-PCRAIR achieves a storage density of 2.14–3.67 bits per nucleotide (bits/nt), significantly improving storage capacity.

Funder

Tianjin Science and Technology Planning Project

Publisher

MDPI AG

Reference39 articles.

1. DNA storage: Research landscape and future prospects;Dong;Natl. Sci. Rev.,2020

2. Recalibrating global data center energy-use estimates;Masanet;Science,2020

3. Bar-Lev, D., Orr, I., Sabary, O., Etzion, T., and Yaakobi, E. (2021). Deep DNA storage: Scalable and robust DNA storage via coding theory and deep learning. arXiv.

4. Strategies for sample labelling and library preparation in DNA metabarcoding studies;Bohmann;Mol. Ecol. Resour.,2022

5. Emerging approaches to DNA data storage: Challenges and prospects;Doricchi;ACS Nano,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3