A New Characterization Method for Rock Joint Roughness Considering the Mechanical Contribution of Each Asperity Order

Author:

Yuan Zhouhao,Ye Yicheng,Luo Binyu,Liu Yang

Abstract

The morphology of the joint surface is multi-scale, and it can be divided into first-order asperity (waviness) and second-order asperity (unevenness). At present, the joint roughness characterization formula considers only the morphology contribution of waviness and unevenness components and does not fully consider their mechanical contribution. At same time, the relationship between the mechanical contribution and the morphology contribution is still unclear. Thus, the characterization formula considering the mechanical contribution of waviness and unevenness needs to be further studied. In this study, the standard joint roughness coefficient (JRC) profiles were first decomposed into waviness and unevenness. Then, three types of joint specimens with different asperity orders (flat, the standard JRC profile, and the profile containing only waviness) were prepared by the 3D engraving technique. Finally, direct shear tests were carried out on 39 sets of red sandstone joint specimens under three normal stresses. The mechanical contributions of waviness and unevenness were studied, the relationship between the mechanical contribution and the morphology contribution of waviness and unevenness was analyzed, and the characterization formula considering the mechanical contribution of waviness and unevenness was established. The results showed that the following: (1) the method combining the ensemble empirical mode decomposition (EEMD) and the critical decomposition level could be used to separate the waviness and unevenness from the joint surface; (2) the mechanical contribution of the waviness and unevenness decreased with the increase in normal stress; (3) the relationship between the mechanical contribution ratio and the statistical parameter ratio of the waviness and unevenness can be describe by power function; and (4) the roughness characterization formula considering the mechanical contribution and morphology contribution was established. This study will enhance the accurate evaluation of the roughness coefficient and shear strength of the joint specimen.

Funder

Hubei Provincial Department of Education

Natural Science Foundation of Hubei Province

Science and Technology Department of Hubei Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3