Morphological classification method and data-driven estimation of the joint roughness coefficient by consideration of two-order asperity

Author:

Hu Yunpeng123,Feng Wenkai123,Li Wenbin4,Yi Xiaoyu4,Liu Kan23,Ye Longzhen23,Zhao Jiachen4,Lu Xianjing5,Zhang Ruichao6

Affiliation:

1. College of Environment and Civil Engineering, State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology , Chengdu 610059 , China

2. Key Laboratory of Geohazard Prevention of Hilly Mountains, Ministry of Natural Resources , Fuzhou 350002 , China

3. Fujian Provincial Key Laboratory of Geological Hazards , Fuzhou 350002 , China

4. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology , Chengdu 610059 , China

5. Henan Xinhua Wuyue Pumped Storage Power Generation Co., Ltd. , Xinyang 465450 , China

6. Central China branch of China Power Construction New Energy Group Co., Ltd. , Changsha 410019 , China

Abstract

Abstract The roughness of the joint surface plays a significant role in evaluating the shear strength of rock. The waviness (first-order) and unevenness (second-order) of natural joints have different effects on the characterization of joint surface roughness. To accurately quantify the influence of the two-order asperity on the joint roughness coefficient (JRC) prediction of joint surface profile curve, the optimal sampling interval of the asperity was determined through the change of the R p {R}_{{\rm{p}}} value of the joint surface profile curve. The separation of the two-order asperity of 48 joint surface profile curves was completed at the optimal sampling interval, and morphological parameters of the asperity such as i ave {i}_{{\rm{ave}}} , R max {R}_{{\rm{\max }}} , and R p {R}_{{\rm{p}}} were counted from three aspects: asperity angle of the profile curve, asperity degree, and the trace length. Based on the statistical results of the morphological parameters considering the two-order asperity, the new nonlinear prediction models were proposed. The results showed that the curve slope mutation point SI = 2 mm is the optimal separation distance of the two-order asperity of the joint surface profile curve. The refined separation method that considers the waviness and unevenness of morphological parameters can characterize the detailed morphological features of the joint surface in more dimensions. The support vector regression (SVR) and random forest (RF) models that take into account a two-order asperity separated results have higher accuracy than traditional models. The prediction accuracy has improved by 7–8% in SVR model compared with SVR(SO) and RF(SO). The SVR nonlinear model that considering separation of two-orders of joint surface roughness is more suitable for the prediction of JRC.

Publisher

Walter de Gruyter GmbH

Subject

Condensed Matter Physics,General Materials Science

Reference65 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3