Pulsar Emissions, Signal Modeling and Passive ISAR Imaging

Author:

Lazarov

Abstract

The present work addresses pulsar Crab Nebula emissions from point of view of their modeling and applications for asteroid detection and imaging by applying inverse synthetic aperture radar (ISAR) principles. A huge value of the plasma’s effective temperature is a reason for pulsar emission coherency, a property of great practical meaning for a space objects navigation, localization and imaging. Based on measurement data obtained by Goldstone-Apple Valley and Arecibo radio telescopes, an original time frequency grid mathematical model of pulsar emissions is created. Passive ISAR scenario, a space object’s geometry and a model of pulsar signals reflected from the space object’s surface are also described and graphically illustrated. A new range compression approach for ISAR imaging is suggested and demonstrated. In order to reduce the level of additive white Gaussian noise in signals and enlarge the signal to noise ratio in the final image, coherent summation of multiple complex images is applied. To prove the correctness of the geometry, signal models and theoretical analysis, results of numerical experiments are provided.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference29 articles.

1. Coherent Mechanisms of Radio Emission and Magnetic Models of Pulsars;Ginzburg,1969

2. Spacecraft navigation using X-ray pulsars;Ray;J. Guid. Control Dyn.,2006

3. Pulsar Navigation for Deep Spacehttps://www.centauri-dreams.org/?p=15475

4. How to Navigate Deep Space by Pulsar 2016https://newatlas.com/pulsars-gps-space-navigation/44978/

5. Detection of Dispersed Pulsars in a Time Series by Using a Matched Filtering Approach. Master’s Thesis, August 2016https://essay.utwente.nl/71435/1/GROOTJANS_MA_EWI.pdf

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3