Abstract
The paper analyses the possibility of Forward Scatter Radar (FSR) systems to detect airplanes using cosmic emission from pulsars and planets (pulsar, Sun, Moon). A suboptimal multichannel algorithm for joint detection and evaluation of the parameters of the forward scattering signal created by an airplane (duration and velocity) is proposed, with preliminary compensation of the powerful direct signal emitted by cosmic sources (pulsar, Sun and Moon). The expressions for calculation of the Signal-to-Noise Ratio (SNR) at the input of the detector and the compensator are obtained. The detection characteristics are also obtained, and the requirements for the suppression coefficient of the compensator are evaluated. A methodology for calculating the maximum distance for detecting an aircraft using a described algorithm is proposed. The obtained results show that due to the Forward Scatter (FS) effect, there is the theoretical possibility to detect airplanes at close ranges by FSRs, which use very weak signals from cosmic sources.
Funder
Bulgarian National Science Fund
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference25 articles.
1. The Radio Sextant
2. Radiometer Radar (Passive Radar);Nikolaev,1964
3. Radar handbook;Skolnik,1990
4. Bistatic Radar;Willis,1991
5. Secondary applications of wireless technology;Cherniakov,2000
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献