Prediction of Genetic Groups within Brettanomyces bruxellensis through Cell Morphology Using a Deep Learning Tool
-
Published:2021-07-21
Issue:8
Volume:7
Page:581
-
ISSN:2309-608X
-
Container-title:Journal of Fungi
-
language:en
-
Short-container-title:JoF
Author:
Lebleux Manon,Denimal Emmanuel,De Oliveira Déborah,Marin Ambroise,Desroche Nicolas,Alexandre Hervé,Weidmann Stéphanie,Rousseaux Sandrine
Abstract
Brettanomyces bruxellensis is described as a wine spoilage yeast with many mainly strain-dependent genetic characteristics, bestowing tolerance against environmental stresses and persistence during the winemaking process. Thus, it is essential to discriminate B. bruxellensis isolates at the strain level in order to predict their stress resistance capacities. Few predictive tools are available to reveal intraspecific diversity within B. bruxellensis species; also, they require expertise and can be expensive. In this study, a Random Amplified Polymorphic DNA (RAPD) adapted PCR method was used with three different primers to discriminate 74 different B. bruxellensis isolates. High correlation between the results of this method using the primer OPA-09 and those of a previous microsatellite analysis was obtained, allowing us to cluster the isolates among four genetic groups more quickly and cheaply than microsatellite analysis. To make analysis even faster, we further investigated the correlation suggested in a previous study between genetic groups and cell polymorphism using the analysis of optical microscopy images via deep learning. A Convolutional Neural Network (CNN) was trained to predict the genetic group of B. bruxellensis isolates with 96.6% accuracy. These methods make intraspecific discrimination among B. bruxellensis species faster, simpler and less costly. These results open up very promising new perspectives in oenology for the study of microbial ecosystems.
Funder
European Regional Development Fund
Subject
Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Bioprotection in winemaking;New Advances in Saccharomyces [Working Title];2023-11-15