Dual Branch Attention Network for Person Re-Identification

Author:

Fan Denghua,Wang LiejunORCID,Cheng Shuli,Li Yongming

Abstract

As a sub-direction of image retrieval, person re-identification (Re-ID) is usually used to solve the security problem of cross camera tracking and monitoring. A growing number of shopping centers have recently attempted to apply Re-ID technology. One of the development trends of related algorithms is using an attention mechanism to capture global and local features. We notice that these algorithms have apparent limitations. They only focus on the most salient features without considering certain detailed features. People’s clothes, bags and even shoes are of great help to distinguish pedestrians. We notice that global features usually cover these important local features. Therefore, we propose a dual branch network based on a multi-scale attention mechanism. This network can capture apparent global features and inconspicuous local features of pedestrian images. Specifically, we design a dual branch attention network (DBA-Net) for better performance. These two branches can optimize the extracted features of different depths at the same time. We also design an effective block (called channel, position and spatial-wise attention (CPSA)), which can capture key fine-grained information, such as bags and shoes. Furthermore, based on ID loss, we use complementary triplet loss and adaptive weighted rank list loss (WRLL) on each branch during the training process. DBA-Net can not only learn semantic context information of the channel, position, and spatial dimensions but can integrate detailed semantic information by learning the dependency relationships between features. Extensive experiments on three widely used open-source datasets proved that DBA-Net clearly yielded overall state-of-the-art performance. Particularly on the CUHK03 dataset, the mean average precision (mAP) of DBA-Net achieved 83.2%.

Funder

Xinjiang Uygur Autonomous Region Natural Science Foundation Project

National Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3