Improving Performance in Person Reidentification Using Adaptive Multiple Loss Baseline

Author:

Huang Zhongmiao,Wang LiejunORCID,Li YongmingORCID,Du AnyuORCID,Jiang Shaochen

Abstract

Currently, deep learning is the mainstream method to solve the problem of person reidentification. With the rapid development of neural networks in recent years, a number of neural network frameworks have emerged for it, so it is becoming more important to explore a simple and efficient baseline algorithm. In fact, the performance of the same module varies greatly in different positions of the network architecture. After exploring how modules can play a maximum role in the network and studying and summarizing existing algorithms, we designed an adaptive multiple loss baseline (AML) with a simple structure but powerful functions. In this network, we use an adaptive mining sample loss (AMS) and other modules, which can mine more information from input samples at the same time. Based on triplet loss, AMS loss can optimize the distance between the input sample and its positive and negative samples and protect structural information within the sample. During the experiment, we conducted several group tests and confirmed the high performance of AML baseline via the results. AML baseline has outstanding performance in three commonly used datasets. The two indicators of AML baseline on CUHK-03 are 25.7% and 26.8% higher than BagTricks.

Funder

the National Science Foundation of China

Publisher

MDPI AG

Subject

Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pose Knowledge distill guidance: Effective Pose guide learning for Person Re-Identification;Proceedings of the International Workshop on Artificial Intelligence for Signal, Image Processing and Multimedia;2024-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3