Author:
Lee Gi-Ho,Park Jae-Young,Ham Seung-Jun,Kim Young-Jin
Abstract
A microgrid energy management system (MEMS) optimally schedules the operation of dispatchable distributed energy resources to minimize the operation costs of microgrids (MGs) via an economic dispatch (ED). Actual ED implementation in the MEMS relies on an optimization software package called an optimization solver. This paper presents a comparative study of optimization solvers to investigate their suitability for ED implementation in the MEMS. Four optimization solvers, including commercial as well as open-source-based ones, were compared in terms of their computational capability and optimization results for ED. Two-stage scheduling was applied for the ED strategy, whereby a mixed-integer programming problem was solved to yield the optimal operation schedule of battery-based energy storage systems. In the first stage, the optimal schedule is identified one day before the operating day; in the second stage, the optimal schedule is updated every 5 min during actual operation to compensate for operational uncertainties. A modularized programming strategy was also introduced to allow for a comparison between the optimization solvers and efficient writing of codes. Comparative simulation case studies were conducted on three test-bed MGs to evaluate the optimization results and computation times of the compared optimization solvers.
Funder
Korea Electric Power Corporation
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献