Abstract
Generation dispatching is a challenge in islanded microgrids due to the operational and economic restrictions in isolated zones. Furthermore, the impact of usual operational network changes in topology, load demand, and generation availability may become significant considering the grid size. This research paper presents a detailed multiple cost function modeling methodology of an optimal power flow algorithm applied to a non-interconnected zone in Colombia. The optimal power flow (OPF) formulation includes cost functions related to renewable resources as presented in the isolated zone and a complete model of the charging and discharging of batteries. Additionally, the flexibility of the proposal is tested using three different network topologies with a characteristic daily load curve from the zone. The main contribution of this paper lies in the implementation of an optimal power flow including cost functions of renewable sources for isolated microgrids. A test case for a non-interconnected zone in Colombia is performed for various operation cases.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献