A Fourier–Legendre Polynomial Forest Height Inversion Model Based on a Single-Baseline Configuration

Author:

Zhang Bing12,Zhu Hongbo1,Xu Wenxuan1,Xu Sairu1,Chang Xinyue1,Song Weidong12,Zhu Jianjun3

Affiliation:

1. School of Geomatics, Liaoning Technical University, Fuxin 123000, China

2. Collaborative Innovation Institute of Geospatial Information Service, Liaoning Technical University, Fuxin 123000, China

3. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China

Abstract

In this article, we propose a Fourier–Legendre (FL) polynomial forest height estimation algorithm based on low-frequency single-baseline polarimetric interferometric synthetic aperture radar (PolInSAR) data. The algorithm can obtain forest height with a single-baseline PolInSAR configuration while capturing a high-resolution vertical profile for the forest volume. This is based on the consideration that the forest height remains constant within neighboring pixels. Meanwhile, we also assume that the coefficients of the FL polynomials remain unchanged within neighboring pixels, except for the last polynomial coefficient. The idea of using neighboring pixels to increase the observations provides us with the possibility to obtain high-order FL polynomials. With this approach, it is possible to obtain a high-resolution vertical profile that is suitable for forest height estimation without losing too much spatial resolution. P-band PolInSAR data acquired in Mabounie in Gabon and Krycklan in Sweden were selected for testing the proposed algorithm. The results show that the algorithm outperforms the random volume over ground (RVoG) model by 18% and 16.7% in forest height estimation for the Mabounie and Krycklan study sites, respectively.

Funder

the National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3