Efficient Near-Infrared Spectrum Detection in Nondestructive Wood Testing via Transfer Network Redesign

Author:

Jiang Dapeng1ORCID,Wang Keqi1,Li Hongbo2ORCID,Zhang Yizhuo3

Affiliation:

1. College of Computer and Control Engineering, Northeast Forestry University, 26 Hexing Rd., Harbin 150040, China

2. College of Electrical and Information, Northeast Agricultural University, Harbin 150030, China

3. College of Computer Science and Artificial Intelligence, Changzhou University, 1 Gehu Middle Rd., Changzhou 213164, China

Abstract

This study systematically developed a deep transfer network for near-infrared spectrum detection using convolutional neural network modules as key components. Through meticulous evaluation, specific modules and structures suitable for constructing the near-infrared spectrum detection model were identified, ensuring its effectiveness. This study extensively analyzed the basic network components and explored three unsupervised domain adaptation structures, highlighting their applications in the nondestructive testing of wood. Additionally, five transfer networks were strategically redesigned to substantially enhance their performance. The experimental results showed that the Conditional Domain Adversarial Network and Globalized Loss Optimization Transfer network outperformed the Direct Standardization, Piecewise Direct Standardization, and Spectral Space Transformation models. The coefficients of determination for the Conditional Domain Adversarial Network and Globalized Loss Optimization Transfer network are 82.11% and 83.59%, respectively, with root mean square error prediction values of 12.237 and 11.582, respectively. These achievements represent considerable advancements toward the practical implementation of an efficient and reliable near-infrared spectrum detection system using a deep transfer network.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3