Experimental Study of the Factors Influencing the Regeneration Performance of Reduced Graphite Oxide Filter Materials under Water Cleaning

Author:

Yang Min1,Yang Bing1,Zhang Xin1,Wu Saisai1ORCID,Yu Tao2ORCID,Song Hong3,Ren Fei4,He Puchun5,Zhu Yanhui6

Affiliation:

1. School of Resources Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China

2. Wuhan Second Ship Design and Research Institute, Wuhan 430205, China

3. School of Management, Xi’an University of Architecture and Technology, Xi’an 710055, China

4. XAUAT Engineering Technology Co., Ltd., Xi’an 710055, China

5. Yan’an Branch of Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Yan’an 716000, China

6. Hunan Geological Exploration Institute of China Metallurgical Geology Bureau, Changsha 410001, China

Abstract

With the normalization of epidemic prevention and control, air filters are being used and replaced more frequently. How to efficiently utilize air filter materials and determining whether they have regenerative properties have become current research hotspots. This paper discusses the regeneration performance of reduced graphite oxide filter materials, which were studied in depth using water cleaning and the relevant parameters, including the cleaning times. The results showed that water cleaning was most effective using a 20 L/(s·m2) water flow velocity with a 17 s cleaning time. The filtration efficiency decreased as the number of cleanings increased. Compared to the blank group, the filter material’s PM10 filtration efficiency decreased by 0.8%, 19.4%, 26.5%, and 32.4% after the first to fourth cleanings, respectively. The filter material’s PM2.5 filtration efficiency increased by 12.5% after the first cleaning, and decreased by 12.9%, 17.6%, and 30.2% after the second to fourth cleanings, respectively. The filter material’s PM1.0 filtration efficiency increased by 22.7% after the first cleaning, and decreased by 8.1%, 13.8%, and 24.5% after the second to fourth cleanings, respectively. Water cleaning mainly affected the filtration efficiency of particulates sized 0.3–2.5 μm. Reduced graphite oxide air filter materials could be water washed twice and maintain cleanliness equal to 90% of the original filter material. Water washing more than twice could not achieve the standard cleanliness equal to 85% of the original filter material. These data provide useful reference values for the evaluation of the filter materials’ regeneration performance.

Funder

Key Research and Development Program of the Shaanxi Province of China

XAUAT Engineering Technology Co., Ltd.

Internal Scientific Research Project of the Shaanxi Provincial Land Engineering Construction Group

National Natural Science Foundation of China

Natural Science Basic Research Program of Shaanxi

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3