Comparative Filtration Performance of Composite Air Filter Materials Synthesized Using Different Impregnated Porous Media

Author:

Zeng Yuxia1,Liu Qing1ORCID,Zhang Xin1,Wang Zhao1,Yu Tao2ORCID,Ren Fei3,He Puchun4

Affiliation:

1. School of Resources Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China

2. Wuhan Second Ship Design and Research Institute, Wuhan 430205, China

3. XAUAT Engineering Technology Co., Ltd., Xi’an 710055, China

4. Yan’an Branch of Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Yan’an 716000, China

Abstract

Indoor environment quality is currently a hot research topic. In this study, composite air filter materials were synthesized using different impregnated porous medium materials, and their filtration performance and structural parameters were analyzed. The results showed that composite filter materials’ structures changed at the fibers’ surfaces when synthesized using different porous medium material layers. The filtration efficiency of composite filter materials synthesized using different porous media reached a maximum 0.8 m/s filtration velocity, and PM10, PM2.5, and PM1.0 increased by 1.67~26.07, 1.19~26.96, and 1.10~21.98%, respectively. The filtration efficiencies of reduced graphene oxide composite for PM10, PM2.5, and PM1.0 were 21.26, 20.22, and 18.50% higher, respectively, than those of carbon black composite. In addition, the filtration efficiency of the composite material synthesized by reducing graphene oxide improved for 0 to 1.0 μm particulates and was more effective by comparison. Filtration efficiency and resistance were comprehensively considered during air filter use to provide useful values for the selection and preparation of composite filter materials in the future.

Funder

Key Research and Development Program of Shaanxi Province of China

XAUAT Engineering Technology Co. Ltd

Internal Scientific Research Project of Shaanxi Provincial Land Engineering Construction Group

Natural Science Foundation of Shaanxi Province of China

Natural Science Foundation of Shaanxi Province

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3