Enhancing Tool Wear Prediction Accuracy Using Walsh–Hadamard Transform, DCGAN and Dragonfly Algorithm-Based Feature Selection

Author:

Shah Milind1ORCID,Borade Himanshu2ORCID,Sanghavi Vedant3ORCID,Purohit Anshuman2,Wankhede Vishal1ORCID,Vakharia Vinay1ORCID

Affiliation:

1. Department of Mechanical Engineering, School of Technology, PDEU, Gandhinagar 382426, Gujarat, India

2. Mechanical Engineering Department, Medi-Caps University, Indore 453331, Madhya Pradesh, India

3. Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York, NY 11201, USA

Abstract

Tool wear is an important concern in the manufacturing sector that leads to quality loss, lower productivity, and increased downtime. In recent years, there has been a rise in the popularity of implementing TCM systems using various signal processing methods and machine learning algorithms. In the present paper, the authors propose a TCM system that incorporates the Walsh–Hadamard transform for signal processing, DCGAN aims to circumvent the issue of the availability of limited experimental dataset, and the exploration of three machine learning models: support vector regression, gradient boosting regression, and recurrent neural network for tool wear prediction. The mean absolute error, mean square error and root mean square error are used to assess the prediction errors from three machine learning models. To identify these relevant features, three metaheuristic optimization feature selection algorithms, Dragonfly, Harris hawk, and Genetic algorithms, were explored, and prediction results were compared. The results show that the feature selected through Dragonfly algorithms exhibited the least MSE (0.03), RMSE (0.17), and MAE (0.14) with a recurrent neural network model. By identifying the tool wear patterns and predicting when maintenance is required, the proposed methodology could help manufacturing companies save money on repairs and replacements, as well as reduce overall production costs by minimizing downtime.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3