Application of Deep Learning Gated Recurrent Unit in Hybrid Shunt Active Power Filter for Power Quality Enhancement

Author:

Ali AyeshaORCID,Rehman Ateeq UrORCID,Almogren AhmadORCID,Eldin Elsayed TagORCID,Kaleem MuhammadORCID

Abstract

This research work aims at providing power quality improvement for the nonlinear load to improve the system performance indices by eliminating maximum total harmonic distortion (THD) and reducing neutral wire current. The idea is to integrate a shunt hybrid active power filter (SHAPF) with the system using machine learning control techniques. The system proposed has been evaluated under an artificial neural network (ANN), gated recurrent unit, and long short-term memory for the optimization of the SHAPF. The method is based on the detection of harmonic presence in the power system by testing and comparison of traditional pq0 theory and deep learning neural networks. The results obtained through the proposed methodology meet all the suggested international standards of THD. The results also satisfy the current removal from the neutral wire and deal efficiently with minor DC voltage variations occurring in the voltage-regulating current. The proposed algorithms have been evaluated on the performance indices of accuracy and computational complexities, which show effective results in terms of 99% accuracy and computational complexities. deep learning-based findings are compared based on their root-mean-square error (RMSE) and loss function. The proposed system can be applied for domestic and industrial load conditions in a four-wire three-phase power distribution system for harmonic mitigation.

Funder

Future University in Egypt

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3