Deep Learning Peephole LSTM Neural Network-Based Channel State Estimators for OFDM 5G and Beyond Networks

Author:

Essai Ali Mohamed Hassan1ORCID,Abdellah Ali R.1ORCID,Atallah Hany A.2ORCID,Ahmed Gehad Safwat3ORCID,Muthanna Ammar4ORCID,Koucheryavy Andrey4

Affiliation:

1. Department of Electrical Engineering, Faculty of Engineering, Al-Azhar University, Qena 83513, Egypt

2. Electrical Engineering Department, Faculty of Engineering, South Valley University, Qena 83523, Egypt

3. Department of Electrical Engineering, Luxor Academy of Engineering and Technology, Qena 83513, Egypt

4. Department of Telecommunication Networks and Data Transmission, The Bonch-Bruevich Saint-Petersburg State University of Telecommunications, St. Petersburg 193232, Russia

Abstract

This study uses deep learning (DL) techniques for pilot-based channel estimation in orthogonal frequency division multiplexing (OFDM). Conventional channel estimators in pilot-symbol-aided OFDM systems suffer from performance degradation, especially in low signal-to-noise ratio (SNR) regions, due to noise amplification in the estimation process, intercarrier interference, a lack of primary channel data, and poor performance with few pilots, although they exhibit lower complexity and require implicit knowledge of the channel statistics. A new method for estimating channels using DL with peephole long short-term memory (peephole LSTM) is proposed. The proposed peephole LSTM-based channel state estimator is deployed online after offline training with generated datasets to track channel parameters, which enables robust recovery of transmitted data. A comparison is made between the proposed estimator and conventional LSTM and GRU-based channel state estimators using three different DL optimization techniques. Due to the outstanding learning and generalization properties of the DL-based peephole LSTM model, the suggested estimator significantly outperforms the conventional least square (LS) and minimum mean square error (MMSE) estimators, especially with a few pilots. The suggested estimator can be used without prior information on channel statistics. For this reason, it seems promising that the proposed estimator can be used to estimate the channel states of an OFDM communication system.

Funder

Ministry of Science and High Education of the Russian Federation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3