Analysis of a New Super High Temperature Hybrid Absorption-Compression Heat Pump Cycle

Author:

Sun Jian,Wang Yinwu,Wu Kexin,Ge Zhihua,Yang Yongping

Abstract

Utilization of high-temperature energy in industrial production processes is often exhausted by huge low-temperature waste heat without recovery. Thus, energy efficiency is quite limited. Heat pumps are widely used as a high-efficiency waste heat recovery system and are divided into vapor compression cycle, driven by electricity, and absorption type, driven by steam or hot water. However, compression heat pumps are quite difficult to reach more than 100 °C due to the temperature and compression limits of compressors and the working medium. Meanwhile, the COP (coefficient of performance) of an absorption heat pump is quite low due to the thermodynamic cycle characteristics. In order to increase the outlet temperature and COP significantly, a new type of compression-absorption hybrid heat pump cycle is presented and simulated. Compared with traditional cycles, this heat pump can reach the heat sink temperature of 200 °C with a highly satisfactory COP. This heat pump could reach the optimal COP of 3.249 when the pressure ratio of the compressor is 6.5, the coupling temperature of the low-pressure stage is 55 °C and the coupling temperature of the high-pressure stage is 73 °C. Exergy analysis shows that evaporators and condensers show better efficiency. This heat pump could be promising in different kinds of heat recovery.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3