Optimizing the Recovery of Latent Heat of Condensation from the Flue Gas Stream through the Combustion of Solid Biomass with a High Moisture Content

Author:

Kabiesz Jarosław1,Kubica Robert1ORCID

Affiliation:

1. Department of Chemical Engineering and Process Design, Silesian University of Technology, M. Strzody 7, 44-100 Gliwice, Poland

Abstract

This study focuses on a specific method of heat recovery in combustion systems especially dedicated to wet biomass. Solid biofuels such as woodchips or bark are sources of renewable energy, a substitute of fossil fuels, of dynamically growing importance due to the energy transformation towards a zero-emission economy. Various solutions are generally known, in particular those based on absorption and compressor heat pumps. The solution presented here eliminates the need for such expensive equipment while maintaining very high efficiency. It involves a system of several suitably configured scrubbers. Chemcad 8 simulation shows how the fluid flow rates affect the efficiency of the proposed solution. Optimal configuration of the system and adjustment of the process parameters (flow rates of water in scrubbers circuits) result in a thermal efficiency as high as 108.2%, close to the maximum theoretically achievable efficiency (111%). The system was compared with other existing solutions for efficiency. The performance of the system was examined under different operating conditions to determine the optimum. The effect of an increased fuel moisture content on efficiency was determined. It was shown that the key to achieving significant cost benefits for such a solution is to optimise the flow rates of the circulating fluids.

Funder

Ministry of Education and Science of the Republic of Poland

Publisher

MDPI AG

Reference35 articles.

1. Crippa, M., Guizzardi, D., Banja, M., Solazzo, E., Muntean, M., Schaaf, E., Pagani, F., Monforti-Ferrario, F., Olivier, J.G.J., and Quadrelli, R. (2022). CO2 Emissions of All World Countries, European Commission.

2. Estimating the Global Waste Heat Potential;Forman;Renew. Sustain. Energy Rev.,2016

3. Theoretical Efficiency Limits for Energy Conversion Devices;Cullen;Energy,2010

4. Waste Heat Recovery Technologies and Applications;Jouhara;Therm. Sci. Eng. Prog.,2018

5. Techno-Economic Study of Full-Open Absorption Heat Pump Applied to Flue Gas Total Heat Recovery;Yang;Energy,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3