Novel Method of Bauxite Treatment Using Electroreductive Bayer Process

Author:

Shoppert Andrei12ORCID,Valeev Dmitry3ORCID,Loginova Irina2ORCID

Affiliation:

1. Laboratory of Advanced Technologies in Non-Ferrous and Ferrous Metals Raw Materials Processing, Ural Federal University, 620002 Yekaterinburg, Russia

2. Department of Non-Ferrous Metals Metallurgy, Ural Federal University, 620002 Yekaterinburg, Russia

3. Laboratory of Sorption Methods, Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia

Abstract

Reductive leaching in the Bayer cycle using iron (2+) allows for Al extraction to be significantly increased through the magnetization of Al-goethite and Al-hematite. However, the use of expensive iron (2+) salts or iron powder as a source of iron (2+) leads to a significant increase in production costs. In this work, the feasibility of a new method, the reductive leaching of bauxite using an electrolysis process, was investigated. The reduction of iron minerals of boehmitic bauxite in both the Bayer solution and purely alkaline solutions was carried out. Experiments were performed using a plate cathode and a bauxite suspension in an alkaline solution, as well as using a bulk cathode with a stainless-steel mesh at the bottom of a cell as the current supply. During the electrolysis process, the potential of the cathode relative to the reference electrode was measured as a function of the current at different concentrations of solid (100–300 g L−1) and suspension temperatures (95–120 °C). It was shown that the current efficiency using the suspension and plate cathode with the predominant deposition of Fe did not exceed 50% even with the addition of magnetite to increase the contact of the solid phase with the current supply. With the use of a bulk cathode, the reduction of iron minerals led predominantly to the formation of magnetite with the efficiency of using the electric current at more than 80%. As a result of the preliminary desilication and electroreduction, it was possible to extract more than 98% of Al from bauxite and to increase the iron content in the bauxite residue to 57–58%.

Funder

RSCF

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3