Long Sump Life Effects of a Naturally Aged Bio-Ester Oil Emulsion on Tool Wear in Finish Turning a Ni-Based Superalloy

Author:

Wood Paul1ORCID,Mantle Andrew2ORCID,Boud Fathi1ORCID,Carter Wayne1,Gunputh Urvashi1ORCID,Pawlik Marzena1ORCID,Lu Yiling1,Díaz-Álvarez José13ORCID,Miguélez Garrido María Henar3

Affiliation:

1. Institute of Innovation in Sustainable Engineering, University of Derby, Kedleston Road, Derby DE22 1GB, UK

2. Rolls-Royce Plc, Moor Lane, P.O. Box 31, Derby DE24 8BJ, UK

3. Department of Mechanical Engineering, University Carlos III of Madrid, 28911 Leganés, Spain

Abstract

This paper discusses a method of finish turning Inconel 718 alloy to compare machining performance of a naturally aged and used metalworking fluid (MWF), which had been conventionally managed through its life cycle, with the same new unaged product. The MWF concentrate was a new-to-market bio-ester oil, diluted with water to produce an emulsion. In the experiments, 50 mm diameter bars were turned down with multiple passes at a 250 μm depth of cut to reach a tool flank wear of 200 μm. The machining was interrupted at several stages to measure the flank wear and compare the chip forms for the aged and unaged MWF. The method of finish turning used a small tool nose radius and a small depth of cut that was found to be sensitive in detecting a difference in the flank wear and chip forms for the aged and unaged MWF. On the chemistry, the findings suggest that higher total hardness of the aged MWF was the cause of reduced lubricity and accelerated flank wear. This paper discusses the state of the art with the insights that underpin the finish turning method for the machinability assessment of MWFs. The findings point to stabilization of the MWF chemistry to maintain machining process capability over an extended sump life.

Funder

Rolls-Royce

University of Derby’s College of Science and Engineering and UC3m

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3