Influence of Applied Load and Sliding Distance on Wear Performance of AlSi7Mg0.6 Aluminum Alloy

Author:

Zhang Haibo1,Zhao Yingxin1ORCID,Pan Like1,Zhao Aiguo2

Affiliation:

1. Standards & Metrology Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing 100010, China

2. College of Civil Engineering, Nanjing Tech University, Nanjing 211816, China

Abstract

The wear performance of AlSi7Mg0.6 aluminum alloy, a casting aluminum alloy used in positioning devices for catenary systems of high-speed railways which fail frequently on lines where the speed of trains is higher than 300 m/s, is discussed in this study. It was estimated that sliding contact wear occurred and mainly contributed to the failure. To explore the competing mechanism for frictional wear failure, frictional experiments based on three groups of sliding distance (0.5 mm, 1.5 mm and 3.0 mm) and four groups of applied loads (20 N, 50 N, 100 N and 200 N) were implemented. Three-dimensional morphological observation results revealed that the wear volumes at a sliding distance of 0.5 mm were only about 1/10 of that at a sliding distance of 3.0 mm. It was also revealed that the wear volume based on a sliding distance of 3.0 mm and applied load of 20 N was still much larger than the wear volume under a sliding distance of 0.5 mm and applied load of 200 N. SEM observation of the microstructures revealed that abrasive wear was the dominant wear mechanism in dry sliding friction conditions. A simplified positioning device model was also established to study the influence of tension force on wear performance. The simulation results revealed that smaller tension force between the positioning support and positioning hook would lead to higher relative sliding distance and larger wear depth. Sliding contact friction should be avoided due to relatively large wear efficiency compared with rolling contact friction. Both experimental and simulation results suggested that proper tension force was preferred in assembling components which could ensure rolling contact friction rather than sliding contact friction.

Funder

Research Project of China Academy of Railway Sciences Corporation Limited

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3