Therapeutic Potential of Rosa davurica Pall. Root Extract as an Antidiabetic Agent: A Comprehensive Analysis from Molecular Mechanisms to In Vivo Efficacy

Author:

Hwang Du Hyeon12ORCID,Asirvatham Ravi Deva1,Mohan Prakash Ramachandran Loganathan1,Kang Changkeun12ORCID,Kim Euikyung12ORCID

Affiliation:

1. Department of Pharmacology and Toxicology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea

2. Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea

Abstract

Rosa davurica Pall. is widely used in traditional oriental herbal therapy, but its components and molecular mechanisms of action remain unclear. This study investigates the antidiabetic potential of Rosa davurica Pall. root extract (RDR) and elucidates its underlying molecular mechanisms with in vitro and in vivo models. Data from the current study show that RDR exhibits strong antioxidant activity and glucose homeostasis regulatory effects. It significantly impacts glucose homeostasis in C2C12 skeletal muscle cells by inhibiting α-glucosidase activity. Further molecular mechanistic studies revealed that RDR promoted glucose uptake by phosphorylation of AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC), but not Phosphatidylinositol 3-kinase (PI 3-kinase)/Akt in C2C12 skeletal muscle cells. These actions increased the expression and translocation of glucose transporter type 4 (GLUT4) to the plasma membrane. In addition, RDR treatment in the STZ-induced diabetic rats remarkably improved the low body weight, polydipsia, polyphagia, hyperglycemia, and islet architecture and increased the insulin/glucose ratio. The liver (ALT and AST) and kidney marker enzyme (BUN and creatinine) levels were restored by RDR treatment as well. Phytochemical analysis identified eight major constituents in RDR, crucial for its antioxidant and antidiabetic activity. Through the molecular docking of representative glucose transporter GLUT4 with these compounds, it was confirmed that the components of RDR had a significantly high binding score in terms of structural binding. These findings from the current study highlight the antidiabetic effects of RDR. Collectively, our data suggest that RDR might be a potential pharmaceutical natural product for diabetic patients.

Funder

Ministry of Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3