A Monocular-Visual SLAM System with Semantic and Optical-Flow Fusion for Indoor Dynamic Environments

Author:

Chen WeifengORCID,Shang GuangtaoORCID,Hu KaiORCID,Zhou ChengjunORCID,Wang XiyangORCID,Fang Guisheng,Ji AihongORCID

Abstract

A static environment is a prerequisite for the stable operation of most visual SLAM systems, which limits the practical use of most existing systems. The robustness and accuracy of visual SLAM systems in dynamic environments still face many complex challenges. Only relying on semantic information or geometric methods cannot filter out dynamic feature points well. Considering the problem of dynamic objects easily interfering with the localization accuracy of SLAM systems, this paper proposes a new monocular SLAM algorithm for use in dynamic environments. This improved algorithm combines semantic information and geometric methods to filter out dynamic feature points. Firstly, an adjusted Mask R-CNN removes prior highly dynamic objects. The remaining feature-point pairs are matched via the optical-flow method and a fundamental matrix is calculated using those matched feature-point pairs. Then, the environment’s actual dynamic feature points are filtered out using the polar geometric constraint. The improved system can effectively filter out the feature points of dynamic targets. Finally, our experimental results on the TUM RGB-D and Bonn RGB-D Dynamic datasets showed that the proposed method could improve the pose estimation accuracy of a SLAM system in a dynamic environment, especially in the case of high indoor dynamics. The performance effect was better than that of the existing ORB-SLAM2. It also had a higher running speed than DynaSLAM, which is a similar dynamic visual SLAM algorithm.

Funder

National Key R&D programme of China

Basic Public Welfare Research Project of Zhejiang Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3