A Grey Box Modeling Method for Fast Predicting Buoyancy-Driven Natural Ventilation Rates through Multi-Opening Atriums

Author:

Xue PengORCID,Ai Zhengtao,Cui Dongjin,Wang Wei

Abstract

The utilization of buoyancy-driven natural ventilation in atrium buildings during transitional seasons helps create a healthy and comfortable indoor environment by bringing fresh air indoors. Among other factors, the air flow rate is a key parameter determining the ventilation performance of an atrium. In this study, a grey box modeling method is proposed and a prediction model is built for calculating the buoyancy-driven ventilation rate using three openings. This model developed from Bruce’s neutral height-based formulation and conservation laws is supported with a theoretical structure and determined with 7 independent variables and 4 integrated parameters. The integrated parameters could be estimated from a set of simulated data and in the results, the error of the semi-empirical predictive equation derived from CFD (computational fluid dynamics) simulated data is controlled within 10%, which indicates that a reliable predictive equation could be established with a rather small dataset. This modeling method has been validated with CFD simulated data, and it can be applied extensively to similar buildings for designing an expected ventilation rate. The simplicity of this grey box modeling should save the evaluation time for new cases and help designers to estimate the ventilation performance and choose building optimal opening designs.

Funder

Beijing Municipal Excellent Talents Foundation

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3