Optimization of Corrugated Sheet Packing Structure Based on Analysis of Falling Film Flow Characteristics

Author:

Liao Junhua,Xue PengORCID,Jin LingORCID,Zhao Mengjing,Zhang Nan,Liu Junjie

Abstract

The falling film flow characteristics of a liquid on the surface of corrugated sheet packing are crucial for its mass transfer performance in various industrial applications. In this study, a falling film flow experiment with laser-induced fluorescence technology was conducted to validate the flow characteristics of a falling film simulated using computational fluid dynamics (CFD). The influences of Reynolds number (Re) and the packing structure on flow characteristics were analyzed with quantitative film thickness and wetted area obtained through three-dimensional simulation. The results show that the CFD model can accurately predict the liquid falling–film flow behavior and calculate the characteristic parameters. For sinusoidal corrugated sheets, when Re reaches 500, the groove flow changes into a rivulet flow along the adjacent ripples and the wetted area is at its largest, about 0.022 m2. However, relative to the geometric area of the corrugated sheet, the wetted area can only reach 20% of the surface area, and the overall wetting performance is still poor. Triangular and trapezoidal corrugated sheets were further proposed and proved to improve the wetting area compared with the sinusoidal sheet, with maximum increases of 23% and 9%, respectively. On this basis, extensive research was carried out on the corrugation angle. The results show that a triangular corrugated sheet with a 75° corrugated angle was more conducive to the flow of the liquid film, and the wetted area was 38.8% of the surface area.

Funder

The National Key R&D Program of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3