Parameter Identification of a Model Scale Ship Drive Train

Author:

Vrijdag ArthurORCID,Martelli MicheleORCID

Abstract

Simulation models of the ship propulsion system play an increasingly important role, for instance in controller design and condition monitoring. However, creation of such simulation models requires significant time and effort. In this paper, the application of deterministic identification techniques on a DC-electric ship drive train is explored as an alternative for data-driven identification techniques that require extensive measured data sets collected over long periods of ship operation. First, a nonlinear and a linear simulation model that represent the dynamic behavior of the propulsion plant are developed, and the main parameters to be identified are defined. Then, a set of experiments on a model scale boat in the bollard pull condition are conducted using an ad hoc experimental setup and data acquisition system. Subsequently, various types of identification techniques are applied, aiming to determine the unknown model parameters. Eventually, a comparison is made between experimental and simulated results, using the different sets of the estimated parameters. The value of the demonstrated approaches lies in the fast determination of unknown system parameters. These parameters can be used in simulation models, which in turn can be used for various purposes such as system controller development and tuning. Furthermore, periodic determination of system parameters can support condition monitoring to detect faults or degradation of the system. The latter point directly deals with the condition-based maintenance issue; in fact, monitoring the propulsion plant parameters over time could allow for better management (and timing) of maintenance. Although the developed ideas are far from ready to be used on the full-scale, the authors believe that the methodologies are promising enough to be developed further towards a full-scale application.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3