Abstract
The capability of path tracking largely determines the operational efficiency of deep-sea mining vehicles. In this paper, the relationships of vehicle–sediment mechanical interaction were obtained by sinkage and shear tests. Then, an overset grid method was used to establish the computational fluid dynamics (CFD) model of the vehicle, and the spatial hydrodynamic distribution was calculated in different motion states. Based on the above research, a multi-body dynamic (MBD) model of the mining vehicle was developed, which considered the spatial hydrodynamic effects and the mechanical interaction between vehicle and sediment. In addition, a path-tracking controller based on fuzzy logic control was proposed. A genetic algorithm optimized the fuzzy rules through co-simulation between the controller and the MBD model. Finally, the co-simulation results of the vehicle which moved along the expected path indicated that the performance of the optimized fuzzy controller was preferable to the original fuzzy controller.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Natural Science Foundation of Hunan Province
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献