Artificial Neural Network Control of Battery Energy Storage System to Damp-Out Inter-Area Oscillations in Power Systems

Author:

Lee Heung-Jae,Jhang Seong-SuORCID,Yu Won-Kun,Oh Jung-Hyun

Abstract

This paper proposed an ANN (Artificial Neural Network) controller to damp out inter-area oscillation of a power system using BESS (Battery Energy Storage System). The conventional lead-lag controller-based PSSs (Power System Stabilizer) have been designed using linear models usually linearized at heavy load conditions. This paper proposes a non-linear ANN based BESS controller as the ANN can emulate nonlinear dynamics. To prove the performance of this nonlinear PSS, two linear PSS are introduced at first which are linearized at the heavy load and light load conditions, respectively. It is then verified that each controller can damp out inter-area oscillations at its own condition but not satisfactorily at the other condition. Finally, an ANN controller, that learned the dynamics of these two controllers, is proposed. Case studies are performed using PSCAD/EMTDC and MATLAB. As a result, the proposed ANN PSS shows a promising robust nonlinear performance.

Funder

Korea Electric Power Corporation, Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computational Intelligent Techniques in Mechatronics;Computational Intelligent Techniques in Mechatronics;2024-09-13

2. Optimising Damping Control in Renewable Energy Systems through Reinforcement Learning within Wide-Area Measurement Frameworks;Elektronika ir Elektrotechnika;2024-06-18

3. A Hybrid Renewable Energy Source fed Battery Storage System for Vehicle to Grid Application using AI Techniques;2023 International Conference on Intelligent Technologies for Sustainable Electric and Communications Systems (iTech SECOM);2023-12-18

4. Estimation in Electric Vehicle Battery Systems;2023 OITS International Conference on Information Technology (OCIT);2023-12-13

5. Review of Battery Storage and Power Electronic Systems in Flexible A-R-OPF Frameworks;Electronics;2023-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3