Abstract
This paper introduces a reinforcement learning-based controller, utilising the deep deterministic policy gradient (DDPG) method, to mitigate low-frequency disturbances in electrical grids with renewable energy sources. It features a novel reward function inversely related to the control error and employs a state vector comprising absolute and integral errors to enhance error reduction. The controller, tested on a dual-region system with solar power, utilises phasor measurement unit (PMU) data for global inputs. Its performance is validated through time-domain simulations, pole-zero mapping, modal analysis, frequency response, and participation factor mapping, using a custom MATLAB and Simulink toolkit. The design accounts for communication delays and adapts to variable conditions, which proves to be effective in reducing oscillations and improving system stability.
Publisher
Kaunas University of Technology (KTU)