Parameter Identification and State Estimation of Lithium-Ion Batteries for Electric Vehicles with Vibration and Temperature Dynamics

Author:

Omariba Zachary BosireORCID,Zhang LijunORCID,Kang Hanwen,Sun Dongbai

Abstract

There are different types of rechargeable batteries, but lithium-ion battery has proven to be superior due to its features including small size, more volumetric energy density, longer life, and low maintenance. However, lithium-ion batteries face safety issues as one of the common challenges in their development, necessitating research in this area. For the safe operation of lithium-ion batteries, state estimation is very significant and battery parameter identification is the core in battery state estimation. The battery management system for electric vehicle application must perform a few estimation tasks in real-time. Battery state estimation is defined by the battery model adopted and its accuracy impacts the accuracy of state estimation. The knowledge of the actual operating conditions of electric vehicles requires the application of an accurate battery model; for our research, we adopted the use of the dual extended Kalman filter and it demonstrated that it yields more accurate and robust state estimation results. Since no single battery model can satisfy all the requirements of battery estimation and parameter identification, the hybridization of battery models together with the introduction of internal sensors to batteries to measure battery internal reactions is very essential. Similarly, since the current battery models rarely consider the coupling effect of vibration and temperature dynamics on model parameters during state estimation, this research goal is to identify the battery parameters and then present the effect of the vibration and temperature dynamics in battery state estimation.

Funder

Fundamental Research Funds for Central Universities of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3