Electrochemical Impedance Spectrum Equivalent Circuit Parameter Identification Using a Deep Learning Technique

Author:

Zulueta Asier1,Zulueta Ekaitz2,Olarte Javier3,Fernandez-Gamiz Unai1ORCID,Lopez-Guede Jose Manuel2ORCID,Etxeberria Saioa4

Affiliation:

1. Department of Energy Engineering, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain

2. Department of System Engineering and Automatic Control, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain

3. Centre for Cooperative Research on Alternative Energies (CIC EnergiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain

4. Department of Mechanical Engineering, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain

Abstract

Physical models are suitable for the development and optimization of materials and cell designs, whereas models based on experimental data and electrical equivalent circuits (EECs) are suitable for the development of operation estimators, both for cells and batteries. This research work develops an innovative unsupervised artificial neural network (ANN) training cost function for identifying equivalent circuit parameters using electrochemical impedance spectroscopy (EIS) to identify and monitor parameter variations associated with different physicochemical processes that can be related to the states or failure modes in batteries. Many techniques and algorithms are used to fit a predefined EEC parameter, many requiring high-human-expertise support work. However, once the appropriate EEC model is selected to model the different physicochemical processes associated with a given battery technology, the challenge is to implement algorithms that can automatically calculate parameter variations in real time to allow the implementation of estimators of capacity, health, safety, and other degradation modes. Based on previous studies using data augmentation techniques, the new ANN deep learning method introduced in this study yields better results than classical training algorithms. The data used in this work are based on an aging and characterization dataset for 80 Ah and 12 V lead–acid batteries.

Funder

Control de baterías de flujo

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference24 articles.

1. Plett, G.L. (2011). ECE4710/5710: Modeling Simulation and Identification of Battery Dynamics Equivalent-Circuit Cell Models, University of Colorado Springs. Available online: http://Mocha-Java.Uccs.Edu/ECE5710/ECE5710-Notes02.pdf.

2. Li-ion battery degradation modes diagnosis via Convolutional Neural Networks;Costa;J. Energy Storage,2022

3. Xu, R., Wang, Y., and Chen, Z. (2023). Data-driven battery aging mechanism analysis and degradation pathway prediction. Batteries, 9.

4. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries;Zhang;IEEE Trans. Veh. Technol.,2018

5. Predicting battery capacity from impedance at varying temperature and state of charge using machine learning;Gasper;Cell Rep. Phys. Sci.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3