Abstract
In this work, the influence of composition and cold-drawing on nano- and micro-scale morphology and tensile mechanical properties of PE/organoclay nanocomposite fibers was investigated. Nanocomposites were prepared by melt compounding in a twin-screw extruder, using a maleic anhydride grafted linear low density polyethylene (LLDPE–g–MA) and an organomodified montmorillonite (Dellite 67G) at three different loadings (3, 5 and 10 wt %). Fibers were produced by a single-screw extruder and drawn at five draw ratios (DRs): 7.25, 10, 13.5, 16 and 19. All nanocomposites, characterized by XRD, SEM, TEM, and FT-IR techniques, showed an intercalated/exfoliated morphology. The study evidenced that the nanoclay presence significantly increases both elastic modulus (up to +115% for fibers containing 10 wt % of D67G) and drawability of as-spun nanocomposite fibers. Moreover, at fixed nanocomposite composition, the cold-drawing process increases fibers elastic modulus and tensile strength at increasing DRs. However, at high DRs, “face-to-edge” rearrangement phenomena of clay layers (i.e., clay layers tend to rotate and touch each other) arise in fibers at high nanoclay loadings. Finally, nanocomposite fibers show a lower diameter reduction during drawing, with respect to the plain system, and surface feature of adjustable roughness by controlling the composition and the drawing conditions.
Subject
Polymers and Plastics,General Chemistry
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献