Dynamic Molecular Simulation of Polyethylene/Organoclay Nanocomposites for Their Physical Properties and Foam Morphology

Author:

Sharudin Rahida Wati1,Md Azmi Nik Salwani1,Hanizan Anuaruddin1,Akhbar Suffiyana1,Ahmad Zakiah2,Ohshima Masahiro3

Affiliation:

1. School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia

2. School of Civil Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia

3. Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan

Abstract

Polyethylene materials are of great interest to be used in many applications due to their many advantageous characteristics. It is light, highly chemical resistant, easy to process, low in cost and has good mechanical properties. Polyethylene is widely used as a cable-insulating material. However, research is still needed to further improve its insulation quality and properties. In this study, an experimental and alternative approach through a dynamic modeling method was conducted. The main objective was to investigate the effect of modified organoclay concentration on the properties of polyethylene/organoclay nanocomposites by observing their characterization and optical and mechanical properties. The thermogram curve reveals that 2 wt% organoclay used has the highest crystallinity (46.7%) while the highest amount of organoclay used produced the lowest crystallinity (31.2%). The presence of cracks was also observed mostly in the nanocomposite with higher content of organoclay, usually where 2.0 wt% and above of organoclay was used. Morphological observation from simulation results supports the experimental work. Only small pores were observed to form in lower concentrations, and as the concentration was increased to 2.0 wt% and above, the pores present became larger in size. Increasing the concentration of organoclay up to 2.0 wt% reduced the interfacial tension while increasing the concentration above 2.0 wt% did not bring any changes to the interfacial tension value. Different formulations produced different behavior of nanocomposite. Hence the control of the formulation was important to control the final result of the products for appropriate application in different sectors of industry.

Funder

Universiti Teknologi MARA

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3