Improvement of Phosphate Adsorption Kinetics onto Ferric Hydroxide by Size Reduction

Author:

Martí VicençORCID,Jubany Irene,Ribas David,Benito José Antonio,Ferrer Berta

Abstract

Ball milling and ultra-sonication size reduction procedures were applied to granular ferric hydroxide (GFH) to obtain two micro-sized adsorbents. These two adsorbents and GFH were investigated to improve the removal of phosphates from water. The size reduction procedures, using the milling method, allowed a reduction of size from 0.5–2 mm to 0.1–2 µm and total disaggregation of the GFH structure. Using an ultra-sonication method yielded a final size of 1.9–50.3 µm with partial disaggregation. The Langmuir model correlated well with the isotherms obtained in batch equilibrium tests for the three adsorbents. The maximum adsorption capacity (qmax) for the milled adsorbent was lower than GFH, but using ultra-sonication was not different from GFH. The equilibrium adsorption of two wastewater samples with phosphate and other anions onto the GFH corresponded well with the expected removal, showing that potential interferences in the isotherms were not important. Batch kinetics tests indicated that the pseudo second-order model fitted the data. Long-term adsorption capacity in kinetics (qe) showed the same trend described for qmax. The application of milling and ultra-sonication methods showed 3.5- and 5.6-fold increases of the kinetic constant (k2) versus the GFH value, respectively. These results showed that ultra-sonication is a very good procedure to increase the adsorption rate of phosphate, maintaining qe and increasing k2.

Funder

Agencia Estatal de Investigación/European Regional Development Plan

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3