An Optimal Derivative-Free Ostrowski’s Scheme for Multiple Roots of Nonlinear Equations

Author:

Behl Ramandeep,Alharbi Samaher Khalaf,Mallawi Fouad Othman,Salimi MehdiORCID

Abstract

Finding higher-order optimal derivative-free methods for multiple roots (m≥2) of nonlinear expressions is one of the most fascinating and difficult problems in the area of numerical analysis and Computational mathematics. In this study, we introduce a new fourth order optimal family of Ostrowski’s method without derivatives for multiple roots of nonlinear equations. Initially the convergence analysis is performed for particular values of multiple roots—afterwards it concludes in general form. Moreover, the applicability and comparison demonstrated on three real life problems (e.g., Continuous stirred tank reactor (CSTR), Plank’s radiation and Van der Waals equation of state) and two standard academic examples that contain the clustering of roots and higher-order multiplicity (m=100) problems, with existing methods. Finally, we observe from the computational results that our methods consume the lowest CPU timing as compared to the existing ones. This illustrates the theoretical outcomes to a great extent of this study.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference26 articles.

1. An efficient derivative-free method for solving nonlinear equations

2. Derivative-free family of higher order root finding methods

3. A new technique to obtain derivative-free optimal iterative methods for solving nonlinear equations

4. Comparison of some optimal derivative free three point iterations;Zhanlav;Numer. Anal. Approx. Theory,2020

5. Fourth-Order Derivative-Free Optimal Families of King’s and Ostrowski’s Methods;Behl,2015

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3