Mutually Complementary Measure-Correlate-Predict Method for Enhanced Long-Term Wind-Resource Assessment

Author:

Nam WoochulORCID,Oh Ki-YongORCID

Abstract

Evaluating the economic feasibility of wind farms via long-term wind-resource assessments is indispensable because short-term data measured at a candidate wind-farm site cannot represent the long-term wind potential. Prediction errors are significant when seasonal and year-on-year variations occur. Moreover, reliable long-term reference data with a high correlation to short-term measured data are often unavailable. This paper presents an alternative solution to predict long-term wind resources for a site exhibiting seasonal and year-on-year variations, where long-term reference data are unavailable. An analysis shows that a mutually complementary measure-correlate-predict method can be employed, because several datasets obtained over short periods are used to correct long-term wind resource data in a mutually complementary manner. Moreover, this method is useful in evaluating extreme wind speeds, which is one of the main factors affecting site compliance evaluation and the selection of a suitable wind turbine class based on the International Electrotechnical Commission standards. The analysis also shows that energy density is a more sensitive metric than wind speed for sites with seasonal and year-on-year variations because of the wide distribution of wind speeds. A case study with short-term data measured at Fujeij, Jordan, clearly identifies the factors necessary to perform the reliable and accurate assessment of long-term wind potentials.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Estimation of natural resources for renewable energy systems;Genetic Optimization Techniques for Sizing and Management of Modern Power Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3