Abstract
Evaluating the economic feasibility of wind farms via long-term wind-resource assessments is indispensable because short-term data measured at a candidate wind-farm site cannot represent the long-term wind potential. Prediction errors are significant when seasonal and year-on-year variations occur. Moreover, reliable long-term reference data with a high correlation to short-term measured data are often unavailable. This paper presents an alternative solution to predict long-term wind resources for a site exhibiting seasonal and year-on-year variations, where long-term reference data are unavailable. An analysis shows that a mutually complementary measure-correlate-predict method can be employed, because several datasets obtained over short periods are used to correct long-term wind resource data in a mutually complementary manner. Moreover, this method is useful in evaluating extreme wind speeds, which is one of the main factors affecting site compliance evaluation and the selection of a suitable wind turbine class based on the International Electrotechnical Commission standards. The analysis also shows that energy density is a more sensitive metric than wind speed for sites with seasonal and year-on-year variations because of the wide distribution of wind speeds. A case study with short-term data measured at Fujeij, Jordan, clearly identifies the factors necessary to perform the reliable and accurate assessment of long-term wind potentials.
Funder
National Research Foundation of Korea
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Estimation of natural resources for renewable energy systems;Genetic Optimization Techniques for Sizing and Management of Modern Power Systems;2023