Selecting the Best Quantity and Variety of Surrogates for an Ensemble Model

Author:

Ye Pengcheng,Pan Guang

Abstract

Surrogate modeling techniques are widely used to replace the computationally expensive black-box functions in engineering. As a combination of individual surrogate models, an ensemble of surrogates is preferred due to its strong robustness. However, how to select the best quantity and variety of surrogates for an ensemble has always been a challenging task. In this work, five popular surrogate modeling techniques including polynomial response surface (PRS), radial basis functions (RBF), kriging (KRG), Gaussian process (GP) and linear shepard (SHEP) are considered as the basic surrogate models, resulting in twenty-six ensemble models by using a previously presented weights selection method. The best ensemble model is expected to be found by comparative studies on prediction accuracy and robustness. By testing eight mathematical problems and two engineering examples, we found that: (1) in general, using as many accurate surrogates as possible to construct ensemble models will improve the prediction performance and (2) ensemble models can be used as an insurance rather than offering significant improvements. Moreover, the ensemble of three surrogates PRS, RBF and KRG is preferred based on the prediction performance. The results provide engineering practitioners with guidance on the superior choice of the quantity and variety of surrogates for an ensemble.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3