Novel Hybrid Crayfish Optimization Algorithm and Self-Adaptive Differential Evolution for Solving Complex Optimization Problems

Author:

Fakhouri Hussam N.1ORCID,Ishtaiwi Abdelraouf1ORCID,Makhadmeh Sharif Naser12,Al-Betar Mohammed Azmi2ORCID,Alkhalaileh Mohannad3ORCID

Affiliation:

1. Data Science and Artificial Intelligence Department, Faculty of Information Technology, University of Petra, Amman 1196, Jordan

2. Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Ajman P.O. Box 346, United Arab Emirates

3. College of Education, Humanities and Social Sciences, Al Ain University, Al-Ain P.O. Box 64141, United Arab Emirates

Abstract

This study presents the Hybrid COASaDE Optimizer, a novel combination of the Crayfish Optimization Algorithm (COA) and Self-adaptive Differential Evolution (SaDE), designed to address complex optimization challenges and solve engineering design problems. The hybrid approach leverages COA’s efficient exploration mechanisms, inspired by crayfish behaviour, with the symmetry of SaDE’s adaptive exploitation capabilities, characterized by its dynamic parameter adjustment. The balance between these two phases represents a symmetrical relationship wherein both components contribute equally and complementary to the algorithm’s overall performance. This symmetry in design enables the Hybrid COASaDE to maintain consistent and robust performance across a diverse range of optimization problems. Experimental evaluations were conducted using CEC2022 and CEC2017 benchmark functions, demonstrating COASaDE’s superior performance compared to state-of-the-art optimization algorithms. The results and statistical analyses confirm the robustness and efficiency of the Hybrid COASaDE in finding optimal solutions. Furthermore, the applicability of the Hybrid COASaDE was validated through several engineering design problems, where COASaDE outperformed other optimizers in achieving the optimal solution.

Funder

Ajman University

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3