Comprehensive Evaluation and Transcriptome Analysis Reveal the Salt Tolerance Mechanism in Semi-Wild Cotton (Gossypium purpurascens)

Author:

Peng Zhen123,Rehman Abdul12ORCID,Li Xiawen1,Jiang Xuran1,Tian Chunyan1,Wang Xiaoyang1,Li Hongge12,Wang Zhenzhen2,He Shoupu123,Du Xiongming123ORCID

Affiliation:

1. Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China

2. National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China

3. National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572025, China

Abstract

Elevated salinity significantly threatens cotton growth, particularly during the germination and seedling stages. The utilization of primitive species of Gossypium hirsutum, specifically Gossypium purpurascens, has the potential to facilitate the restoration of genetic diversity that has been depleted due to selective breeding in modern cultivars. This investigation evaluated 45 G. purpurascens varieties and a salt-tolerant cotton variety based on 34 morphological, physiological, and biochemical indicators and comprehensive salt tolerance index values. This study effectively identified a total of 19 salt-tolerant and two salt-resistant varieties. Furthermore, transcriptome sequencing of a salt-tolerant genotype (Nayanmian-2; NY2) and a salt-sensitive genotype (Sanshagaopao-2; GP2) revealed 2776, 6680, 4660, and 4174 differentially expressed genes (DEGs) under 0.5, 3, 12, and 24 h of salt stress. Gene ontology enrichment analysis indicated that the DEGs exhibited significant enrichment in biological processes like metabolic (GO:0008152) and cellular (GO:0009987) processes. MAPK signaling, plant-pathogen interaction, starch and sucrose metabolism, plant hormone signaling, photosynthesis, and fatty acid metabolism were identified as key KEGG pathways involved in salinity stress. Among the DEGs, including NAC, MYB, WRKY, ERF, bHLH, and bZIP, transcription factors, receptor-like kinases, and carbohydrate-active enzymes were crucial in salinity tolerance. Weighted gene co-expression network analysis (WGCNA) unveiled associations of salt-tolerant genotypes with flavonoid metabolism, carbon metabolism, and MAPK signaling pathways. Identifying nine hub genes (MYB4, MYB105, MYB36, bZIP19, bZIP43, FRS2 SMARCAL1, BBX21, F-box) across various intervals offered insights into the transcriptional regulation mechanism of salt tolerance in G. purpurascens. This study lays the groundwork for understanding the important pathways and gene networks in response to salt stress, thereby providing a foundation for enhancing salt tolerance in upland cotton.

Funder

2021 Research Program of Sanya Yazhou Bay Science and Technology City

Natural Science Foundation of China

China Agriculture Research System

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3