Inhibition of the Exocyst Complex Attenuates the LRRK2 Pathological Effects

Author:

Ciampelli Cristina1ORCID,Galleri Grazia1ORCID,Puggioni Silvia1,Fais Milena1ORCID,Iannotta Lucia2ORCID,Galioto Manuela1,Becciu Marta1ORCID,Greggio Elisa2,Bernardoni Roberto3ORCID,Crosio Claudia1ORCID,Iaccarino Ciro1ORCID

Affiliation:

1. Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy

2. Department of Biology, University of Padova, 35131 Padova, Italy

3. Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy

Abstract

Pathological mutations in leucine-rich repeat kinase 2 (LRRK2) gene are the major genetic cause of Parkinson’s disease (PD). Multiple lines of evidence link LRRK2 to the control of vesicle dynamics through phosphorylation of a subset of RAB proteins. However, the molecular mechanisms underlying these processes are not fully elucidated. We have previously demonstrated that LRRK2 increases the exocyst complex assembly by Sec8 interaction, one of the eight members of the exocyst complex, and that Sec8 over-expression mitigates the LRRK2 pathological effect in PC12 cells. Here, we extend this analysis using LRRK2 drosophila models and show that the LRRK2-dependent exocyst complex assembly increase is downstream of RAB phosphorylation. Moreover, exocyst complex inhibition rescues mutant LRRK2 pathogenic phenotype in cellular and drosophila models. Finally, prolonged exocyst inhibition leads to a significant reduction in the LRRK2 protein level, overall supporting the role of the exocyst complex in the LRRK2 pathway. Taken together, our study suggests that modulation of the exocyst complex may represent a novel therapeutic target for PD.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3