Ultra-Short-Term Wind Power Prediction Based on eEEMD-LSTM

Author:

Huang Jingtao12ORCID,Zhang Weina1,Qin Jin1,Song Shuzhong1

Affiliation:

1. Information Engineering College, Henan University of Science and Technology, Luoyang 471023, China

2. Henan Engineering Laboratory of Power Electronic Devices and Systems, Luoyang 471023, China

Abstract

The intermittent and random nature of wind brings great challenges to the accurate prediction of wind power; a single model is insufficient to meet the requirements of ultra-short-term wind power prediction. Although ensemble empirical mode decomposition (EEMD) can be used to extract the time series features of the original wind power data, the number of its modes will increase with the complexity of the original data. Too many modes are unnecessary, making the prediction model constructed based on the sub-models too complex. An entropy ensemble empirical mode decomposition (eEEMD) method based on information entropy is proposed in this work. Fewer components with significant feature differences are obtained using information entropy to reconstruct sub-sequences. The long short-term memory (LSTM) model is suitable for prediction after the decomposition of time series. All the modes are trained with the same deep learning framework LSTM. In view of the different features of each mode, models should be trained differentially for each mode; a rule is designed to determine the training error of each mode according to its average value. In this way, the model prediction accuracy and efficiency can make better tradeoffs. The predictions of different modes are reconstructed to obtain the final prediction results. The test results from a wind power unit show that the proposed eEEMD-LSTM has higher prediction accuracy compared with single LSTM and EEMD-LSTM, and the results based on Bayesian ridge regression (BR) and support vector regression (SVR) are the same; eEEMD-LSTM exhibits better performance.

Funder

National Nature Science Foundation of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stacked dynamic target regularization enhanced autoencoder for soft sensor in industrial processes;The Canadian Journal of Chemical Engineering;2024-08-20

2. Combining TPE-PSO and BiGRU for High-Precision Short-Term Wind Power Forecasting;2024 6th International Conference on Energy Systems and Electrical Power (ICESEP);2024-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3