An Efficient Compression Method for Lightning Electromagnetic Pulse Signal Based on Convolutional Neural Network and Autoencoder

Author:

Guo Jinhua123ORCID,Wang Jiaquan2ORCID,Xiao Fang2,Zhou Xiao2,Liu Yongsheng13,Ma Qiming2

Affiliation:

1. School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 201306, China

2. Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China

3. Institute of Solar Energy, Shanghai University of Electric Power, Shanghai 200090, China

Abstract

Advances in technology have facilitated the development of lightning research and data processing. The electromagnetic pulse signals emitted by lightning (LEMP) can be collected by very low frequency (VLF)/low frequency (LF) instruments in real time. The storage and transmission of the obtained data is a crucial link, and a good compression method can improve the efficiency of this process. In this paper, a lightning convolutional stack autoencoder (LCSAE) model for compressing LEMP data was designed, which converts the data into low-dimensional feature vectors through the encoder part and reconstructs the waveform through the decoder part. Finally, we investigated the compression performance of the LCSAE model for LEMP waveform data under different compression ratios. The results show that the compression performance is positively correlated with the minimum feature of the neural network extraction model. When the compressed minimum feature is 64, the average coefficient of determination R2 of the reconstructed waveform and the original waveform can reach 96.7%. It can effectively solve the problem regarding the compression of LEMP signals collected by the lightning sensor and improve the efficiency of remote data transmission.

Funder

Institute of Electrical Engineering, the Chinese Academy of Sciences

National Key Laboratory on Electromagnetic Environmental Effects and Electro-optical Engineering

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3