Feasibility of a Reusable Radiochromic Dosimeter

Author:

Newton Joseph R.,Recht Maxwell,Hauger Joseph A.,Segarra Gabriel,Inglett Chase,Romo Pedro A.,Adamovics John

Abstract

The current practice for patient-specific quality assurance (QA) uses ion chambers or diode arrays primarily because of their ease of use and reliability. A standard routine compares the dose distribution measured in a phantom with the dose distribution calculated by the treatment planning system for the same experimental conditions. For the particular problems encountered in the treatment planning of complex radiotherapy techniques, such as small fields/segments and dynamic delivery systems, additional tests are required to verify the accuracy of dose calculations. The dose distribution verification should be throughout the total 3D dose distribution for a high dose gradient in a small, irradiated volume, instead of the standard practice of one to several planes with 2D radiochromic (GAFChromic) film. To address this issue, we have developed a 3D radiochromic dosimeter that improves the rigor of current QA techniques by providing high-resolution, complete 3D verification for a wide range of clinical applications. The dosimeter is composed of polyurethane, a radical initiator, and a leuco dye, which is radiolytically oxidized to a dye absorbing at 633 nm. Since this chemical dosimeter is single-use, it represents a significant expense. The purpose of this research is to develop a cost-effective reusable dosimeter formulation. Based on prior reusability studies, three promising dosimeter formulations were studied using small volume optical cuvettes and irradiated to known clinically relevant doses of 0.5–10 Gy. After irradiation, the change in optical density was measured in a spectrophotometer. All three formulations retained linearity of optical density response to radiation upon re-irradiations. However, only one formulation retained dose sensitivity upon at least five re-irradiations, making it ideal for further evaluation as a 3D dosimeter.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3