Thermally Controllable Decolorization of Reusable Radiochromic Complex of Polyvinyl Alcohol, Iodine and Silica Nanoparticles (PAISiN) Irradiated with γ-rays

Author:

Yasuda HiroshiORCID,Miyoshi HirokazuORCID

Abstract

Some medical and industry workers using ionizing radiation sources have potential risks of accidental high-dose exposure of their extremities, particularly their hands. While practical dosimeters suitable for on-site real-time monitoring of hand exposure are not yet available, they are desirable to be developed. Thus, the authors focused on the application of a reusable radiochromic complex composed of polyvinyl alcohol, iodide and silica nanoparticles, named “PAISiN”, and examined their dose responses and thermal stabilities of radiochromic reactions. Three PAISiN samples each were irradiated with 5, 10 and 20 Gy of 137Cs γ-rays, and time changes of the radiation-induced colors were observed at different temperatures: 20 °C (in a laboratory), 40 °C (in an oven) and 5.5 °C (in a refrigerator). It was confirmed that the PAISiN samples presented a red color that was easily detectable by the naked eyesight immediately after irradiation. The coloration was cleared within 24 h for 5 Gy irradiation at room temperature. The decolorization process was remarkably accelerated at 40 °C; it was erased in just 2 h. In contrast, storing in the refrigerator (5.5 °C) kept the color persistently for at least 4 days. These findings indicate that we could flexibly control the decolorization process of PAISiN in accordance with the objective of radiation monitoring.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference44 articles.

1. Evaluation of radiation exposure to staff and environment dose from [18F]-FDG in PET/CT and cyclotron center using thermoluminescent dosimetry;Zargan;J. Biomed. Phys. Eng.,2007

2. An overview on extremity dosimetry in medical applications

3. Potential Radiation-Related Effects on Radiologists

4. Occupational radiation exposure of health professionals and cancer risk assessment for Lithuanian nuclear medicine workers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3