Exploring the Bioethanol Production Potential of Miscanthus Cultivars

Author:

Turner William,Greetham Darren,Mos MichalORCID,Squance MichaelORCID,Kam Jason,Du ChenyuORCID

Abstract

Miscanthus is a fast-growing perennial grass that attracts significant attention for its potential application as a feedstock for bioethanol production. This report explores the difference in the lignocellulosic composition of various Miscanthus cultivars, including Miscanthus × giganteus cultivated at the same location (mainly Lincoln, UK). It also assesses the sugar release profiles and mineral composition profiles of five Miscanthus cultivars harvested over a growing period from November 2018 to February 2019. The results showed that Miscanthus × giganteus contains approximately 45.5% cellulose, 29.2% hemicellulose and 23.8% lignin (dry weight, w/w). Other cultivars of Miscanthus also contain high quantities of carbohydrates (cellulose 41.1–46.0%, hemicellulose 24.3–32.6% and lignin 21.4–24.9%). Pre-treatment of Miscanthus using dilute acid followed by enzymatic hydrolysis released 63.7–80.2% of the theoretical glucose content. Fermentation of a hydrolysate of Miscanthus × giganteus using Saccharomyces cerevisiae NCYC2592 produced 13.58 ± 1.11 g/L of ethanol from 35.13 ± 0.46 g/L of glucose, corresponding to a yield of 0.148 g/g dry weight Miscanthus biomass. Scanning electron microscopy was used to study the morphology of raw and hydrolysed Miscanthus samples, which provided visual proof of Miscanthus lignocellulose degradation in these processes. The sugar release profile showed that a consequence of Miscanthus plant growth is an increase in difficulty in releasing monosaccharides from the biomass. The potassium, magnesium, sodium, sulphur and phosphorus contents in various Miscanthus cultivars were analysed. The results revealed that these elements were slowly lost from the plants during the latter part of the growing season, for a specific cultivar, until February 2019.

Funder

University of Huddersfield

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3