Estimating Directed Phase-Amplitude Interactions from EEG Data through Kernel-Based Phase Transfer Entropy

Author:

De La Pava Panche IvánORCID,Gómez-Orozco VivianaORCID,Álvarez-Meza AndrésORCID,Cárdenas-Peña DavidORCID,Orozco-Gutiérrez ÁlvaroORCID

Abstract

Cross-frequency interactions, a form of oscillatory neural activity, are thought to play an essential role in the integration of distributed information in the brain. Indeed, phase-amplitude interactions are believed to allow for the transfer of information from large-scale brain networks, oscillating at low frequencies, to local, rapidly oscillating neural assemblies. A promising approach to estimating such interactions is the use of transfer entropy (TE), a non-linear, information-theory-based effective connectivity measure. The conventional method involves feeding instantaneous phase and amplitude time series, extracted at the target frequencies, to a TE estimator. In this work, we propose that the problem of directed phase-amplitude interaction detection is recast as a phase TE estimation problem, under the hypothesis that estimating TE from data of the same nature, i.e., two phase time series, will improve the robustness to the common confounding factors that affect connectivity measures, such as the presence of high noise levels. We implement our proposal using a kernel-based TE estimator, defined in terms of Renyi’s α entropy, which has successfully been used to compute single-trial phase TE. We tested our approach on the synthetic data generated through a simulation model capable of producing a time series with directed phase-amplitude interactions at two given frequencies, and on EEG data from a cognitive task designed to activate working memory, a memory system whose underpinning mechanisms are thought to include phase–amplitude couplings. Our proposal detected statistically significant interactions between the simulated signals at the desired frequencies for the synthetic data, identifying the correct direction of the interaction. It also displayed higher robustness to noise than the alternative methods. The results attained for the working memory data showed that the proposed approach codes connectivity patterns based on directed phase–amplitude interactions, that allow for the different cognitive load levels of the working memory task to be differentiated.

Funder

Ministerio de Ciencia Tecnología e Innovación, Colombia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3