Kernel-Based Regularized EEGNet Using Centered Alignment and Gaussian Connectivity for Motor Imagery Discrimination

Author:

Tobón-Henao Mateo1ORCID,Álvarez-Meza Andrés Marino1ORCID,Castellanos-Dominguez Cesar German1ORCID

Affiliation:

1. Signal Processing and Recognition Group, Universidad Nacional de Colombia, Manizales 170003, Colombia

Abstract

Brain–computer interfaces (BCIs) from electroencephalography (EEG) provide a practical approach to support human–technology interaction. In particular, motor imagery (MI) is a widely used BCI paradigm that guides the mental trial of motor tasks without physical movement. Here, we present a deep learning methodology, named kernel-based regularized EEGNet (KREEGNet), leveled on centered kernel alignment and Gaussian functional connectivity, explicitly designed for EEG-based MI classification. The approach proactively tackles the challenge of intrasubject variability brought on by noisy EEG records and the lack of spatial interpretability within end-to-end frameworks applied for MI classification. KREEGNet is a refinement of the widely accepted EEGNet architecture, featuring an additional kernel-based layer for regularized Gaussian functional connectivity estimation based on CKA. The superiority of KREEGNet is evidenced by our experimental results from binary and multiclass MI classification databases, outperforming the baseline EEGNet and other state-of-the-art methods. Further exploration of our model’s interpretability is conducted at individual and group levels, utilizing classification performance measures and pruned functional connectivities. Our approach is a suitable alternative for interpretable end-to-end EEG-BCI based on deep learning.

Funder

Universidad Nacional de Colombia

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

Reference70 articles.

1. A Novel Method of motor imagery classification using eeg signal;Venkatachalam;Artif. Intell. Med.,2020

2. HS-CNN: A CNN with hybrid convolution scale for EEG motor imagery classification;Dai;J. Neural Eng.,2020

3. An automatic subject specific channel selection method for enhancing motor imagery classification in EEG-BCI using correlation;Gaur;Biomed. Signal Process. Control,2021

4. Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: From designing to application;Khan;Comput. Biol. Med.,2020

5. Classification of Brain Signals Using Classifiers for Automated Wheelchair Application;Kanna;Int. J. Mod. Agric.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Stock Trading-Related Emotion Recognition from EEG Signals using Deep Learning EEGNet;Proceedings of the 4th International Conference on Artificial Intelligence and Computer Engineering;2023-11-17

2. A Multi-class Graph Convolutional Neural Network for EEG Classification and Representation;2023 22nd International Symposium on Communications and Information Technologies (ISCIT);2023-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3