Ensemble Neural Networks for Modeling DEM Error

Author:

Nguyen ,Starek ,Tissot ,Cai ,Gibeaut

Abstract

Digital elevation models (DEMs) have become ubiquitous and remarkably effective in the field of earth sciences as a tool to characterize surface topography. All DEMs have a degree of inherent error and uncertainty that is propagated to subsequent models and analyses, which can lead to misinterpretation and inaccurate estimates. A new method was developed to estimate local DEM errors and implement corrections while quantifying the uncertainties of the implemented corrections. The method is based on the flexibility and ability to model complex problems with ensemble neural networks (ENNs). The method was developed to be applied to any DEM created from a corresponding set of elevation points (point cloud) and a set of ground truth measurements. The method was developed and tested using hyperspatial resolution terrestrial laser scanning (TLS) data (sub-centimeter point spacing) collected from a marsh site located along the southern portion of the Texas Gulf Coast, USA. ENNs improve the overall DEM accuracy in the study area by 68% for six model inputs and by 75% for 12 model inputs corresponding to root mean square errors (RMSEs) of 0.056 and 0.045 m, respectively. The 12-input model provides more accurate tolerance interval estimates, particularly for vegetated areas. The accuracy of the method is confirmed based on an independent data set. Although the method still underestimates the 95% tolerance interval, 8% below the 95% target, results show that it is able to quantify the spatial variability in uncertainties due to a relationship between vegetation/land cover and accuracy of the DEM for the study area. There are still opportunities and challenges in improving and confirming the applicability of this method for different study sites and data sets.

Funder

National Oceanic and Atmospheric Administration

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3