An Improved Optimally Designed Fuzzy Logic-Based MPPT Method for Maximizing Energy Extraction of PEMFC in Green Buildings

Author:

Aly Mokhtar1ORCID,Mohamed Emad A.23ORCID,Rezk Hegazy45ORCID,Nassef Ahmed M.46ORCID,Elhosseini Mostafa A.78ORCID,Shawky Ahmed3ORCID

Affiliation:

1. Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago 8420524, Chile

2. Department of Electrical Engineering, College of Engineering, Prince Sattam bin Abdulaziz University, Al Kharj 16278, Saudi Arabia

3. Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt

4. Department of Electrical Engineering, College of Engineering in Wadi Alddawasir, Prince Sattam bin Abdulaziz University, Wadi Alddawasir 11991, Saudi Arabia

5. Electrical Engineering Department, Faculty of Engineering, Minia University, Minia 61111, Egypt

6. Computers and Automatic Control Engineering Department, Faculty of Engineering, Tanta University, Tanta 31733, Egypt

7. Computers and Control Systems Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt

8. College of Computer Science and Engineering, Taibah University, Yanbu 46421, Saudi Arabia

Abstract

Recently, the concept of green building has become popular, and various renewable energy systems have been integrated into green buildings. In particular, the application range of fuel cells (FCs) has become widespread due to the various government plans regarding green hydrogen energy systems. In particular, proton exchange membrane fuel cells (PEMFCs) have proven superiority over other existing FCs. However, the uniqueness of the operating maximum power point (MPP) of PEMFCs represents a critical issue for the PEMFC control systems. The perturb and observe, incremental conductance/resistance, and fuzzy logic control (FLC) represent the most used MPP tracking (MPPT) algorithms for PEMFC systems, among which the FLC-based MPPT methods have shown improved performance compared to the other methods. Therefore, this paper presents a modified FLC-based MPPT method for PEMFC systems in green building applications. The proposed method employs the rate of change of the power with current (dP/dI) instead of the previously used rate of change of power with voltage (dP/dV) in the literature. The employment of dP/dI in the proposed method enables the fast-tracking of the operating MPP with low transient oscillations and mitigated steady-state fluctuations. Additionally, the design process of the proposed controller is optimized using the enhanced version of the success-history-based adaptive differential evolution (SHADE) algorithm with linear population size reduction, known as the LSHADE algorithm. The design optimization of the proposed method is advantageous for increasing the adaptiveness, robustness, and tracking of the MPP in all the operating scenarios. Moreover, the proposed MPPT controller can be generalized to other renewable energy and/or FCs applications. The proposed method is implemented using C-code with the PEMFC model and tested in various operating cases. The obtained results show the superiority and effectiveness of the proposed controller compared to the classical proportional-integral (PI) based dP/dI-based MPPT controller and the classical FLC-based MPPT controller. Moreover, the proposed controller achieves reduced output waveforms ripple, fast and accurate MPPT operation, and simple and low-cost implementation.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3